全讯网-皇冠网 (中国)有限公司官网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

盈禾| 济州岛百家乐的玩法技巧和规则| 威尼斯人娱乐城是真的吗| 百家乐官网群东方鸿运| 亚洲百家乐新全讯网| 全讯网3| 老k百家乐官网游戏| 大发888娱乐城客服| 百家乐官网注码投注论坛| 威尼斯人娱乐城送| 百家乐官网一代龙虎机| 百家乐玩法说| 开百家乐官网骗人吗| 大发888提款| 博之道百家乐官网的玩法技巧和规则 | 优惠搏百家乐的玩法技巧和规则 | 钱柜娱乐城怎么样| 百家乐有赢钱公式吗| 澳门百家乐官网职业赌客| 大发888娱乐场下载ypu| 全讯网百家乐官网的玩法技巧和规则| 迅盈网球比分| 威尼斯人娱乐最新地址| 百家乐庄闲点数| 马牌百家乐官网现金网| 网上娱乐城开户| 中华百家乐娱乐城| 如何看百家乐官网的玩法技巧和规则 | 百家乐官网最新的投注方法| 8大胜| 网上百家乐官网辅助软件| 博彩网导航| 帝王百家乐的玩法技巧和规则| 太阳城百家乐优惠| 高尔夫百家乐官网的玩法技巧和规则 | 易球百家乐官网娱乐城| 宁河县| 体育博彩网| 互博百家乐的玩法技巧和规则| 百家乐官网谁能看准牌| 河东区|