全讯网-皇冠网 (中国)有限公司官网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

网上百家乐官网赌法| 网站百家乐博彩| 百家乐官网棋牌外挂| 牌九娱乐城| 欢乐谷棋牌游戏官网| 至富百家乐的玩法技巧和规则| 百家乐的关键技巧| 金沙国际娱乐| 百家乐路单生| 乐天堂百家乐官网娱乐城| 钱隆百家乐官网破解版| 百家乐官网赌场策略论坛| 百家乐官网群1188999| 百家乐官网牌路分析仪| 新澳博百家乐官网娱乐城| 忻州市| 莱州市| 百家乐官网游戏补牌规则| 真人百家乐官网口诀| 百家乐官网赢新全讯网| 优博百家乐官网yobo88| 怎么看百家乐官网路单| 百家乐官网认牌| 真人百家乐官网新开户送彩金| 百家乐官网澳门路规则算法| 南京百家乐官网赌博现场被抓 | 大发888官方体育| 二八杠语音报牌器| 唐人博彩论坛| 石屏县| 好用百家乐官网软件| 百家乐官网网页qq| 2016虎和蛇合作做生意| 百家乐赌博代理| 金钱豹百家乐的玩法技巧和规则 | 金钻娱乐| 澳门百家乐官网心得玩博| 合肥太阳城莱迪广场| 大发888宫网| 澳门百家乐官网经历| 在线百家乐代理|