全讯网-皇冠网 (中国)有限公司官网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

太阳城百家乐币| 百家乐路单怎样| 百家乐暗红色桌布| 在线百家乐官网游戏软件| 百家乐游戏| 缅甸百家乐官网的玩法技巧和规则 | 百家乐官网庄闲筹码| 德州扑克过牌| 真人百家乐做假| 新西兰百家乐官网的玩法技巧和规则 | 属马的和属猴的在一起做生意好吗| 皇冠网小说微博| 福布斯百家乐的玩法技巧和规则 | 百家乐官网深圳广告| 百家乐官网有方法赚反水| 大发888国际娱乐平台| 百家乐群柏拉图软件| 百家乐官网蔬菜配送公司| 百家乐官网中的概率| 大发线上娱乐| 澳门百家乐怎么下载| 澳门百家乐走势图怎么看| 一共33楼24楼风水怎么说| 678百家乐官网博彩娱乐场| 阿拉善左旗| 利川市| 晓游棋牌官网| 大发888客服咨询电话| 大世界百家乐的玩法技巧和规则| 同乐城百家乐现金网| K7百家乐官网的玩法技巧和规则 | 百家乐庄89| 澳门百家乐鸿运| 战神百家乐娱乐| 新世纪百家乐官网的玩法技巧和规则| 泸西县| 环球国际娱乐| 大发888开户注册网站| 百家乐赌场博彩赌场网| 高档百家乐桌| 百家乐怎样出千|