全讯网-皇冠网 (中国)有限公司官网

今天是
今日新發(fā)布通知公告0條 | 上傳規(guī)范

“數(shù)通古今,學貫中外”系列講座【Renming-Song】

作者:高冰 ?? 來源:數(shù)學學院?? 發(fā)布日期:2012-07-20

主講人:Renming-Song
講座題目:Harnack principle for symmetric stable processes and subordinate Brownian motion
時  間:2012年7月23,24,25, 27日上午10:40~12:00, 及7月30, 31日上午9:00~11:00.
地  點:研究生樓209A
主講人介紹
  Renming-Song received the B.S. degree in mathematics in 1983 and M.S. degree in Mathemtics in 1986, both from Hebei University, Baodin, China. He received his Ph.D. degree in Mathematics from the University of Florida, Gainesville in 1993. He was a visiting assistant professor at Northwestern University and the University of Michigan before moving to the University of Illinois in 1997, where he is a Professor of Mathematics since 2009.
  His research interests include stochastic analysis, Markov processes, potential theory and financial mathematics. Renming Song has published more than 77 research papers, in top mathematical Journals.
主要內(nèi)容:Recently many breakthroughs have been made in the potential theory of symmetric stable processes and subordinate Brownian motions. In all these recent developments, the boundary Harnack principle played an essential role. In this series of lectures I plan to give a self-contained account of the boundary Harnack principle for symmetric stable processes. Then I will extend the argument to obtain the boundary Harnack principle
for a large class of subordinate Brownian motions.

Here are some references:

[1]. K. Bogdan. The boundary Harnack principle for the fractional Laplacian. Studia Math. (1997), 43--80.
[2]. P. Kim, R. Song and Z. Vondracek. Boundary Harnack Principle for Subordinate Brownian Motions. Stoch. Proc. Appl. 119 (2009), 1601--1631.
[3]. P. Kim, R. Song and Z. Vondracek. Potential theory of subordinate Brownian motions revisited. To appear in Stochastic Analysis and Applications to Finance--Essays in Honour of Jia-an Yan, edited by Tusheng Zhang and Xunyu Zhou. World Scientific,2012.
[4]. R. Song. Potential theory of subordinate Brownian motions.
http://open.nims.re.kr/download/probability/song.pdf
[5]. R. Song and J.-M. Wu. Boundary Harnack inequality for symmetric stable processes. J. of Funct. Anal. 168 (1999),403-427.


澳门赌盘| 网络百家乐破| 百家乐官网真人游戏娱乐平台| 百家乐体育博彩| 宿松县| 百家乐娱乐注册就送| 豪门国际娱乐| 澳门百家乐破解| 百家乐官网连闲几率| 百家乐棋牌游| 百家乐官网开户| 桃园市| 大发888客服电话 导航| 定做百家乐官网桌子| 真人百家乐体验金| 希尔顿百家乐官网娱乐城 | 至尊百家乐官网节目单| 任你博百家乐的玩法技巧和规则| 百家乐官网游戏介绍与分析| 泰兴市| 乐博国际| 大佬百家乐官网的玩法技巧和规则 | 百家乐官网游戏图片| 百家乐官网从哪而来| 大发888xp缺少casino| 百家乐的必赢术| 澳门百家乐官网国际| 岑巩县| 大发888怎么样| LV百家乐客户端LV| 利都百家乐国际赌场娱乐网规则 | 做生意的好风水好吗| 足球网| 澳门百家乐赢钱公式不倒翁| 乐百家乐官网彩现金开户| 博狗百家乐开户| 网上百家乐官网骗人不| 百家乐官网真人娱乐注册| 最新皇冠网| 噢门百家乐玩法| 百家乐官网游戏卡通|