全讯网-皇冠网 (中国)有限公司官网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

最好的百家乐博彩网站| 百家乐官网返点| 五大连池市| 百家乐怎么骗人| 赌博百家乐官网技术| 大发888188| 幸运水果机电脑版| 聚龍社百家乐官网的玩法技巧和规则| 永利高网址| 威尼斯人娱乐场色| 百家乐官网揽法大全| 乐百家乐官网彩现金开户| 24山阴宅评凶吉| 真人21点| 水果机游戏机| 百家乐怎么| 百家乐出千大全| 什么是百家乐官网平注法| 百家乐天天乐娱乐场| 淘金百家乐官网现金网| 大发888游戏技巧| 百家乐棋牌游| E乐博百家乐娱乐城| 百家乐心得分享| 免费百家乐官网分析工具| 芝加哥百家乐的玩法技巧和规则| 百家乐官网号公| 百家乐官网庄闲桌子 | 澳门百家乐官网死局| 梭哈棋牌游戏大厅| 威尼斯人娱乐城游戏| 百家乐赌场破解| 百家乐官网如何买大小| 百家乐官网注册开户送彩金| 武义县| 大发888注册| 太阳城线上娱乐城| 威尼斯人娱乐上网导航| 索雷尔百家乐的玩法技巧和规则| 百家乐园鼎丰娱乐城| 百家乐博娱乐网提款速度快不|