全讯网-皇冠网 (中国)有限公司官网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

金沙百家乐官网现金网| 优博百家乐官网的玩法技巧和规则| 百家乐套装| 免费百家乐过滤| 玉林市| ea百家乐系统| 澳门百家乐官网赢钱秘| 钱大发888扑克| 百家乐官网的桌布| 老虎机定位器| 怎样玩百家乐官网的玩法技巧和规则| 百家乐游戏怎么刷钱| 折式百家乐官网赌台| 百家乐tt娱乐| 宝马会百家乐官网现金网| 乐宝百家乐娱乐城| 百家乐官网现金网平台排行榜 | 澳门百家乐官网一把决战输赢| 百家乐平台要多少钱| 澳门百家乐官网是怎样赌| 大发888游戏平台hana| 网上百家乐有没有假| 澳门百家乐官网玩法与游戏规则| 百家乐博彩破解论坛| 做生意的人早晨讲究| 百家乐官网软件编辑原理| 88娱乐城网址tlyd| 百家乐博娱乐赌百家乐的玩法技巧和规则 | 大发888游戏破解软件| 百家乐正反投注| 优博百家乐官网娱乐城| 博彩太阳城| 大发888下载官方网站| 百家乐现金网最好的系统哪里有可靠吗| 百家乐官网游戏机出千| 百乐坊娱乐城官网| 百家乐群1188999| 优惠搏百家乐官网的玩法技巧和规则| 和记娱乐开户| 大发888娱乐场下载官方| 茅台百家乐的玩法技巧和规则 |