全讯网-皇冠网 (中国)有限公司官网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

德钦县| 百家乐官网软件购买| 在线百家乐官网下| 新世纪百家乐官网的玩法技巧和规则| 百家乐官网在线赌场娱乐网规则| 涂山百家乐官网的玩法技巧和规则| 百家乐存在千术吗| 米其林百家乐的玩法技巧和规则| 皇冠现金网安全吗| 真钱梭哈| 绿春县| 百家乐官网变牌器批发| 百家乐官网网上赌场| 金界百家乐的玩法技巧和规则| 百家乐缩水软件| 澳门金沙官网| 百家乐官网网上真钱娱乐网| 水晶百家乐筹码| 博彩通3333| 澳门赌百家乐官网打法| 关于百家乐概率的书| 卓达太阳城希望之洲| 老牌百家乐官网娱乐城| 8运24山风水图解| 新太阳城娱乐| 昭觉县| 大发888优惠红利代码| 临海市| 唐朝百家乐官网的玩法技巧和规则 | 民丰县| 百家乐官网怎么玩才会赢钱| 高科技百家乐牌具| 澳门百家乐官网视频| 网上百家乐博彩正网| 娱乐城注册送38彩金| 至尊百家乐官网吕文婉| 百家乐冼牌机| 百家乐官网书籍| 百家乐大钱赢小钱| 原平市| 百家乐必胜绝技|