全讯网-皇冠网 (中国)有限公司官网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
百家乐官网免费体验金| 视频百家乐官网平台| 盈博国际娱乐城| 澳博线上娱乐| 弥勒县| 网上百家乐注册彩金| 大发888开户博盈国际| 百家乐官网解密软件| 博彩百家乐网址| 大发888娱乐城维护| 香港百家乐官网的玩法技巧和规则 | 百家乐官网2号干扰| 网络百家乐骗局| 皇冠足球投注| 真人百家乐试玩账号| 百家乐官网输了100万| 百家乐破解策略| 百家乐官网连跳规律| 百家乐现金网最好的系统哪里有可靠吗| 大兴区| 百家乐视频游戏账号| 德保县| 电子百家乐博彩正网| 百家乐官网网站那个好| 百家乐平台信誉排名| 克拉克百家乐官网试玩| 大发888在线娱乐城合营商 | 玩百家乐五湖四海娱乐城| 太阳城娱乐城网站| 百家乐专用桌子| 网上百家乐开户送现金| 百家乐官网算牌方| 德晋百家乐的玩法技巧和规则 | 奔驰百家乐可信吗| 里尼的百家乐官网策略| 大发888娱乐城欢迎您| 百苑百家乐官网的玩法技巧和规则| 美国太阳城养老社区| 百家乐官网博娱乐平台赌百家乐官网| 保单百家乐官网路单| 淘金盈赌场有假吗|