全讯网-皇冠网 (中国)有限公司官网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

數學與統計學院"21世紀學科前沿"系列學術報告預告

Second-order Least Squares Method for High-dimensional Variable Selection

編輯: 數學學院 董學敏 時間:2015-06-01
報告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報告時間:2015年6月2日下午3:00-4:00
報告地點:良鄉1-208
報告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
六合彩图纸| 百家乐的路图片| 百家乐官网有赢钱公式吗| 有钱人百家乐官网的玩法技巧和规则 | 新濠峰百家乐官网的玩法技巧和规则| 百家乐网上真钱娱乐| 澳门百家乐娱乐城怎么样| 大丰收娱乐城官网| 百家乐官网平注常赢规则| 百家乐官网路单网下载| 百家乐筹码真伪| 华人百家乐官网博彩论| 优博网站| 线上百家乐官网| 鸟巢百家乐官网的玩法技巧和规则 | 威尼斯人娱乐场官网h00| 网上百家乐官网导航| 网络百家乐金海岸| 澳门美高梅娱乐| 大发888娱乐真钱游戏下载| 微信百家乐官网群二维码| 尊龙线上娱乐| 百家乐技巧赚钱| 百家乐官网的规则玩法| 水果机游戏在线玩| 查看百家乐官网赌博| 老虎机干扰器| 百家乐官网高手看百家乐官网| 大发888虎牌官方下载| 网上百家乐官网试玩网址| 晋宁县| 百家乐不锈钢| 百家乐送现金| 百家乐官网大轮转| 皇冠开户网| 免费百家乐官网娱乐城| 真人百家乐导航| 太阳神百家乐官网的玩法技巧和规则 | 易博彩票网| 大发888网页登陆| 百家乐扑克桌布|